
The Infinitesimal Calculus: 
How and Why it Was Imported into Europe

C. K. Raju*

Nehru Memorial Museum and Library
Teen Murti House

New Delhi 110 011
&

Centre for Studies in Civilizations
Darshan Bhawan

36 Tuglaqabad Institutional Area
New Delhi 110 062

Abstract:

It is well known that the “Taylor-series” expansion, that is the heart of the calculus,
existed in India in widely distributed mathematics/ astronomy/ timekeeping (jyotisa)
texts which preceded Newton and Leibniz by centuries. Why were these texts imported
into Europe? These texts, and the accompanying precise sine values computed using the
series expansions, were useful for the science then most critical to Europe—naviga-
tion—specifically for the problem of determining the three “ells”: latitude, loxodrome,
and longitude. How were they imported? Jesuit records show that they sought out these
texts as inputs to the Gregorian calendar reform, which, I point out, was needed to solve
the latitude problem of European navigation. The Jesuits were equipped with knowledge
of both the local language and the mathematics and astronomy needed to understand
these texts, and they needed these texts also to understand local customs, and  how dates
of traditional festivals were fixed using the local calendar (pancânga). How the mathe-
matics in these texts subsequently diffused into Europe (e.g. through clearinghouses like
Mersenne, and the works of Cavalieri, Fermat, Pascal, Wallis, Gregory etc.) is another
story. 

*
 Address for Correspondence:  C. K. Raju, Professor & Head, Centre for Computer Science, MCRP

University, Gyantantra Parisar, M. P. Nagar Zone I, Bhopal 462 011, Tel: (Work) (0755) 274–822 (Home
Tel/Fax) (0755) 235–421, (Work, Fax) (0755) 294–448, email: c_k_raju@vsnl.net. Delhi: B-56, Tarang
Apartments, 19, I.P. Extension, Delhi 110 092. Tel: (011) 272-6015, Fax: (011) 272-4533, email:
c_k_raju@hotmail.com



Extended summary:

The calculus has played a key role in the development of the sciences, starting from the
“Newtonian Revolution”. According to the “standard” story, the calculus was invented
independently by Leibniz and Newton. This story of indigenous development, ab initio,
is now beginning to totter, like the story of the “Copernican Revolution”. The English-
speaking world has known for over one and a half centuries that “Taylor” series
expansions for sine, cosine and arctangent functions were found in Indian mathe-
matics/astronomy/timekeeping (jyotisa) texts, and specifically in the works of Madhava,
Neelkantha (Tantrasangraha, 1501CE), Jyeshtadeva (Yuktibhâsâ, c. 1530 CE) etc. No
one else, however, has so far studied the connection of these Indian developments to
European mathematics.

The relation is provided by the requirements of the European navigational problem,
the foremost problem of the time in Europe. Columbus and Vasco da Gama used dead
reckoning and were ignorant of celestial navigation. Navigation, however, was both
strategically and economically the key to the prosperity of Europe of that time. Accord-
ingly, various European governments acknowledged their ignorance of navigation,
while announcing huge rewards to anyone who developed an appropriate technique of
navigation. These rewards spread over time from the appointment of Nunes as Royal
Cosmographer in 1529, to the Spanish government’s prize of 1567 through its revised
prize of 1598, the Dutch prize of 1636, Mazarin’s prize to Morin of 1645, the French
offer (through Colbert) of 1666, and the British prize legislated in 1711. Many key
scientists of the time (Huygens, Galileo, etc.) were involved in these efforts: the
navigational problem was the specific objective of the French Royal Academy, and a
key concern for starting the British Royal Society. 

Prior to the clock technology of the 18th century, attacks on the navigational problem
in the 16th and 17th c. focussed on mathematics and astronomy, which were (correctly)
believed to hold the key to celestial navigation, and it was widely (and correctly)
believed by navigational theorists and mathematicians (e.g. by Stevin and Mersenne)
that this knowledge was to be found in ancient mathematical and astronomical or
time-keeping (jyotisa) texts of the east. Though the longitude problem has recently been
highlighted, this was preceded by a latitude problem, and the problem of loxodromes.

The solution of the latitude problem required a reformed calendar: the European
calendar was off by 10 days, and this led to large inaccuracies (more than 3 degrees) in
calculating latitude from measurement of solar altitude at noon,  using e.g. the method
described in the Laghu Bhâskarîya of Bhaskara I. However, reforming the calendar
required a change in the dates of the equinoxes, hence a change in the date of Easter,
and this was authorised by the Council of Trent in 1545. This period saw the rise of the
Jesuits. Clavius studied in Coimbra under the mathematician, astronomer and naviga-
tional theorist Pedro Nunes, and Clavius subsequently reformed the Jesuit mathematical
syllabus at the Collegio Romano. Clavius also headed the committee which authored



the Gregorian Calendar Reform of 1582, and remained in correspondence with his
teacher Nunes during this period. 

Jesuits, like Matteo Ricci, who trained in mathematics and astronomy, under Clavius’
new syllabus [Ricci also visited Coimbra and learnt navigation], were sent to India. In
a 1581 letter, Ricci explicitly acknowledged that he was trying to understand local
methods of timekeeping from “an intelligent Brahmin or an honest Moor”,  in the
vicinity of Cochin, which was, then, the key centre for mathematics and astronomy,
since the Vijaynagar empire had sheltered it from  the continuous onslaughts of raiders
from the north. Language was hardly a problem, for the Jesuits had established a
substantial presence in India, had a college in Cochin, and had even started printing
presses in local languages, like Malayalam and Tamil by the 1570’s. 

Though the difficulties with the calendar were settled by the Gregorian Reform, there
remained the problem of precise sine values which were also needed for calculating
latitude from a local observation of solar altitude at noon.  Sine tables were used also
to calculate loxodromes, which were the focus of efforts of navigational theorists like
Nunes, Mercator etc. (The problem of calculating loxodromes is exactly the problem of
the fundamental theorem of calculus.) Hence, Nunes, Stevin, Clavius etc. were greatly
concerned with accurate sine values, and each of them published lengthy sine tables.
Not only does the very word ‘sine’ derive from a Latin mis-translation of the term jîbâ
used in Arabic for the Indian jîvâ, but Clavius, for example, used the Indian definition
of the sine, and Stevin mentions Aryabhata’s value of π. Madhava’s sine table, which
extended Arayabhata’s sine table, using the series expansion of the sine function, were
then the most accurate sine values available, and the coefficients needed to calculate
these values, in a numerically efficient way, were encapsulated in a couple of verses in
various widely distributed mathematics/astronomy/timekeeping (jyotisa) texts, includ-
ing the Karanapaddhati. 

Sine values could also be used to determine longitude.* But, Europeans encountered
difficulties in using these precise sine value for determining longitude, as in Indo-Arabic
navigational techniques or in the Laghu Bhâskarîya,  because this technique of longitude
determination also required an accurate estimate of the size of the earth, and Columbus
had underestimated the size of the earth to facilitate funding for his project of sailing
West. Columbus’ incorrect estimate was corrected, in Europe, only towards the end of
the 17th c. CE. Even so, the Indo-Arabic navigational technique required calculation,
while Europeans lacked the ability to calculate, since algorismus texts had only recently
triumphed over abacus texts, and the European tradition of mathematics was “spiritual”
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and “formal” rather than practical, as Clavius had acknowledged in the 16th c. and as
Swift (Gulliver’s Travels) had satirized in the 17th c. Finally, the transmission of the
calculus, based on a foreign epistemology,*  led to an epistemological discontinuity that
could be resolved in Europe only in the 19th c., with the development of real numbers
and mathematical analysis, until which time the calculus was viewed with a suspicion
similar to the suspicion that had earlier been directed towards zero, for a similar
prolonged period of a few centuries. This led to the development of the chronometer,
an appliance that could be mechanically used without application of the mind.
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